アルミ超伝導トンネル接合素子(AI-STJ)を 用いたCMB偏光カメラの開発

美馬覚〇, 石野宏和, 樹林敦子, 服部香里, 羽澄昌史^A, 住澤一高^A, 樋口岳雄^A, 吉田光宏^A, 田島治^A, 佐藤伸明^A, 佐藤広海^B, 大谷知行^B,有吉誠一郎^B,渡辺広記^C, 木村誠宏^A, 岡村崇弘^A, 都丸隆行^A, 鈴木敏一^A, 高田卓^d

岡山大, 高工研^A, 理研^B, 総研大^{C,}, 筑波大^d

研究背景

- CMB偏光の精密測定
 - インフレーション由来の重力波 が作るCMB(宇宙背景放射)B モードの観測
- CMB偏光観測衛星LiteBIRDからの検出器への要求
 - □ 60~250GHzをカバー(右図)
 - □ 超高感度:NEP~10⁻¹⁸W/√Hz

□ 1000個以上のアレイ

上記を満たす検出器は現在なく 超伝導検出器のAI-STJは一つの候補

銀河の前景放射とB-mode偏光

- 2枚の超伝導体で絶縁体をサンド イッチしたジョセフソン素子の一種
- クーパー対の結合エネルギー (Egap=2Δ)と転移温度Tcの関 係

Egap(0K)=3.528kTc

絶縁体(I)

- 2枚の超伝導体で絶縁体をサンドイッ チしたジョセフソン素子の一種
- クーパー対の結合エネルギー (Egap=2Δ)と転移温度Tcの関係
 Egap(0K)=3.528kTc
 - □ AI:Tc=1.2K, Egap=0.34meV
 - □ Nb:Tc=9.2K, Egap=3.1meV

超伝導(S) **超伝導(S)**

絶縁体(I)

- 2枚の超伝導体で絶縁体をサンドイッ チしたジョセフソン素子の一種
- クーパー対の結合エネルギー (Egap=2Δ)と転移温度Tcの関係 Egap(0K)=3.528kTc
 - □ AI:Tc=1.2K, Egap=0.34meV
 - Nb:Tc=9.2K, Egap=3.1meV

電磁波の検出方法

- 1. クーパー対による超伝導電流は磁場をか けて抑制しておく
- 電磁波が準粒子(電子)を生成し、トンネ 2. ルする

絶縁体(I)

2010年日本物理学会秋季大会

クーパー対

進粒子(電子)

- 2枚の超伝導体で絶縁体をサンドイッ チしたジョセフソン素子の一種
- クーパー対の結合エネルギー (Egap=2Δ)と転移温度Tcの関係 Egap(0K)=3.528kTc
 - □ AI:Tc=1.2K, Egap=0.34meV
 - Nb:Tc=9.2K, Egap=3.1meV

電磁波の検出方法

- 1. クーパー対による超伝導電流は磁場をか けて抑制しておく
- 電磁波が準粒子(電子)を生成し、トンネ 2. ルする

絶縁体(I)

2010年日本物理学会秋季大会

クーパー対

準粒子(電子)

STJ:超伝導体の選択

 2Δ (0K) = 3.528kTc

超伝導体	臨界温度 (T_C)	ギャップエネルギー (2Δ)	フォトン 検出閾値	ビデオ検出帯域
	[K]	[meV]	[GHz]	[GHz]
Nb	9.23	3.1	750	375-750
Pb	7.193	2.4	580	290-580
Ta	4.39	1.4	340	170-340
In	3.4035	1.1	270	135-270
Al	1.196	0.34	80	40-80
Ga	1.091	0.31	75	37-75
Mo	0.92	0.26	00	30-60
Zn	0.852	0.22		and a state of the
Cd	0.56	0.15 X	-	ARREST
Ti	0.39	0.10	00	A ROOM
Hf	0.165	0.04		
		赵	10	
		あると、		***
AIを超	伝導体に選択す	れば 系		*****
60-25	0GHzのほぼ全均	或をカバー可能 響	1	******
			100	1000

2010年日本物理学会秋季大会

アンテナ接合AI-STJデザイン

ログペリアンテナ

■ 検出器の構造

- 1. ログペリアンテナ
- 2. マッチング用伝送線
- 3. STJ共振回路
- STJのCとマイクロストリップ ラインのLで共振回路を作成 し、STJに電磁波を吸収させ 電力に変換する

2010年日本物到

課題

■ NEPを下げるため、STJ単体でのリークカレントを低減する

■ 検出器デザイン上の課題

- 1. 検出器の共振周波数がSTJのCに強く依存している
- 2. 現状のSTJとLを組み合わせたデザインでは、STJのリークカレント と共振周波数が複雑に相関する

マイクロストリップ型STJ

■ 利点

□ ミリ波検出部分を λ /4長
 さのAI-STJにすれば、
 共振周波数はSTJの長
 さできまる

断面図

2010年日本物理学会秋季大会

従来型STJ シミュレーション結果(150GHz)

従来型STJ共振回路の問題点

 STJの酸化条件でCが変わってしまい、共振周波数も 変わってしまう。

2010年日本物理学会秋季大会

まとめ・今後

- CMB偏光観測用の高感度超伝導検出器の開発を行っている。
- 新しいストリップ型STJを使った検出器のデザインを考えた。
 □ 帯域幅が広くなり、作製時のCの不定性に左右されにくい。

■ 今後

- □ ストリップ型STJの実機を作製し、検出感度試験を行う
- □ フィルターを組み込んだ多色化読み出し
- □ 素子読み出しを周波数領域で多重化する

マイクロストリップフィルター

 目的:検出器の多色化
 CMB偏光観測用検出 器では、レンズのサイズ で集積化が制限される。

> □ 1/4 λ のマイクロストリッ プラインでバンドパスフ ィルターを作り、検出器 への信号を分離する

フィルターシミュレーション結果

フィルターの透過率

電流分布

STJ:作成 ĸekプロセス装置

Nb wire

希釈冷凍機を使ったAI-STJの性能評価

■ 希釈冷凍機(KEK低温)

- □ 最低到達温度:50mK
- □ 外部からミリ波導入のも可能 な構造を持つ
- 測定試料
 - □ AI-STJ(2008年12月試作)

希釈冷凍機本体

AI-SJT

リークカレント一覧

		0.3K冷凍機		希釈冷凄	 根						
		0.32 K		0.16K		0.254 K		0.397 K			
STJ	面積(um2)	Ileak(A)	Ileak(A/um2)	Ileak(A)		Ileak(A/um2)	Ileak(A)	Ile	eak(A/um2)	Ileak(A)	Ileak(A/um2)
A2	40	5.00E-08	8 1.25E-09	_			-			_	
A3	40	5.00E-0	7 1.25E-08	-			-			_	
D2	10000	4.00E-0	6 4.00E-10	1.8	0E-06	1.80E-10	1.2	0E-06	1.20E-10	2.00E-0	6 2.00E-10
D3	10000	4.00E-0	6 4.00E-10	2.0	0E-06	2.00E-10	1.2	20E-06	1.20E-10	2.00E-0	6 2.00E-10

ノイズ(幅)±	Y(A)軸	X(V)軸
アンテナ	100nA	50uV
ダイヤ型	2000nA	70uV

IV特性

- 測定温度:0.32K
- 素子:アンテナ接合Al-STJ(400GHz)
 - □ ギャップ(2∆x2) :1.4mV x 2

Nbアンテナの上にAl-STJを作成したため 超伝導ギャップはNbとAlの中間値になっている

周波数特性

2010年日本物理学会秋季大会

24

温度上昇とミリ波

照射の比較

- ともに磁場無し
- 測定条件
 - □ 上図
 - STJの温度を0.3→2.0Kまで変 化させた(赤線)。
 - ミリ波の導入無し。
 - □ 下図
 - STJ温度:0.3K
 - 温度ミリ波入射(90GHz)の強度を0→-2dbmまで変化。
 - 考察
 - 温度上昇ではギャップが外側に 広がるようなIVの変化は見られ なかった。フォトアシステッドトン ネルだと考えられる?大きさは 0.3mV程でこれは90GHzに対応

Ⅳ測定(温度変化)

^{2010年日本物理学会秋季大会} Ⅳ 測定(入射強度変化) ²⁵

TEMによるAI-STJの断層写真

アンテナ接合AI-STJデザイン

ログペリアンテナ

- ログペリアンテナ
- 伝送線
- □ STJの共振回路
- 150GHz、400GHzに感 度があるようにデザイン

2010/09/13