### HLT (and other things) with GPU

N. Katayama CHEP 2010, Taipei Oct 21, 2010



Introduction Inflation, CMB and GPU

## GPU/many core CPU

- We have been using event (trivial) parallelism in our experiments' data reduction/analysis
  - Each event is independent
  - Each event is not so large
  - We always have many events
- Now I have met HEP applications which could make use of GPU
  - "Event" is large (correlation in a large data sample)
  - A lot of computation for an "event"
  - (Very similar to) image processing

## Pixel detector for Belle II

- Belle II will take several tens more data than Belle
  - Lots of backgrounds
    - From strip detector to pixel detector
  - 100 times more data
    - Real time data reduction in software
  - Red dots are hits. We want to keep hits in blue region (ROI)
- We need to do it online



# Belle II High Level Trigger

This is option #3. There is a plan to use FPGA to reduce PXD



Other detectors

Sorry. We have just started to work on GPU here and I don't have much to report yet You've heard about Belle HLT in the morning

### Inflation, CMB and GPU

This really is high energy physics Energy scale of the inflation is ~10<sup>16</sup>GeV

# Inflation

- Inflation started 10<sup>-36</sup> sec. after the birth of our universe and lasted for 10<sup>-34</sup> sec.
- During that period, the universe expanded of the order of e<sup>60</sup>, from Plank scale to a meter or so (our observable universe)
- Inflation was caused by a particle (field) of energy scale of 10<sup>16</sup> GeV
- <u>Cosmic Microwave Background Radiation</u> (CMB) is the probe to measure its energy scale
  - Let me use the parameter "r" to represent the scale

### CMB is the fossil light from the Big Bang

Dark Energy Accelerated Expansion

AP





- Overlay many hot and cold spots and see polarization around the spots
- A clear correlation of temperature and E-mode seen

### B mode polarization and inflation

- Quantum fluctuation ⇒ Space-time fluctuation ⇒ (thru Inflation) ⇒ Gravitational wave (GW)
- GW h<sub>x</sub> (h<sub>+</sub>) produces B (E) mode polarization
  - B mode polarization can only be produced by GRAVITY
- B mode polarization is 10<sup>-8</sup> smaller than temperature



### Likelihood method

- CMB is Gaussian on pixels (=region of Universe)
- Pixel space likelihood  $\Rightarrow$  most sensitive, unbiased but computationally intensive (Large factor  $\times n_p^{-3}$ )
- $L(\boldsymbol{m}|r)d\boldsymbol{m} = \frac{\exp\left[-\frac{1}{2}\boldsymbol{m}^{t}(S(r)+N)^{-1}\boldsymbol{m}\right]}{|S(r)+N|^{1/2}}\frac{d\boldsymbol{m}}{(2\pi)^{2n_{p}/2}}$ where
  - *m* is Q and U map vector of length 2n<sub>p</sub>
  - S is signal covariance matrix of (2n<sub>p</sub>×2n<sub>p</sub>)
     S is a function of cosmological parameters

 $n_{p} = 3072$ 

N is noise covariance matrix

 N is not diagonal due to correlation

 2010/10/21 Nobu Katayama

### Galactic foregrounds



### Remove foregrounds with multiband maps assuming morphology



## Dust cleaning with 2 bands



Note: These map include both dust and synch

# Dust+Synch cleaning

- Try cleaning dust+synch using 3 bands
- Make α<sub>synch</sub>(θ, φ) dependent
   48 alpha regions
- Maximization using 51 parameters
- (S+N)<sup>-1</sup> depends on all parameters because of N/(1-α)<sup>2</sup>
- It is computationally prohibitive to maximize L using exact (S+N)<sup>-1</sup>
- Use "nominal alphas" by analytically solving  $\frac{\partial \chi^2}{\partial \alpha_i} = 0$  and use it in N/(1- $\alpha$ )<sup>2</sup>
- $(S+N/(1-\alpha)^2)^{-1}$  is a function of r and s







## More finer pixels ?

- We've been using the pixel size of 3072 for up to ~4°. We invert matrices of 6144 × 6144 many times while optimizing 51 parameters
- We are not using information from structure smaller then 4°
  - The good part of the spectra extends to ~1°.
  - Matrix size is 4 times larger for  $\sim 2^{\circ}$  and 16 ,  $\sim 1^{\circ}$ .
  - Computation increases 64 and 4096 times more

10° 1° 0.18° 10.000 Power Law Chaotic p=1 Chaotic p=0.1 SSB (Ne=47-62) E-mode LiteBIRD 1.000 Planck il(l+1)C<sup>BB</sup>/(2π)]<sup>1/2</sup> [μK] Foreground<sub>Synchrotron+Dust</sub> r=1.0 0.100 r=0.1 r=0.01 Lensing r=0.00 0.010 1% Foreground -0.001 **90°** <sup>10</sup>**10**<sup>0</sup> 100

One fit will take 1 day for ~2° and 64 days, ~1° on a latest small computer Use GPUs?

### **Cholesky decomposition**

We need

We need double precision

- Log(det|C|) and C<sup>-1</sup> of the matrices
- **4°** 6144 × 6144
- **2°** 24576 × 24576
- **1°** 98304 × 98304
- We can write C = LL<sup>T</sup> using Cholesky decomposition
- Then we can compute L<sup>-1</sup> and then compute C<sup>-1</sup>
- We have been using BLAS/LAPACK (ATLAS, MKL)
- We started CUDA coding using code examples on the net (<u>http://www.ast.cam.ac.uk/~stg20/cuda/cholesky/index.html</u>)

### **CPU/GPU Results**

|                                   | 6144×6144<br>(GFLOPS) | 12288 × 12288<br>(GFLOPS) |
|-----------------------------------|-----------------------|---------------------------|
| CPU (i-7 920) (numerical recipes) | 0.61                  | 0.62                      |
| CPU(i-7 X980@3.33GHz) MKL(6core)  | 68                    | 72                        |
| GTX480 (our CUDA code)            | 108                   | 115                       |
| C2050 (our CUDA code)             | 87                    | 91                        |
| C2050 (CULA)                      | 159                   | 190 >× 2 faster           |

- Peak performance of C2050 is supposed to be >500 GFLOPS
- GTX480 DP speed is suppressed to ¼ of C2050 (but is faster)
- CUDA 3.1 and CULA 2.1 are used
- Floats are faster as expected
- Copy from/to CPU to/from GPU not included (but is significant)
- Cholesky decomposition cannot saturate GPU
- Cannot do 24576 × 24576(not enough memory on one C2050) 16

### **Conclusions and Plan**

- Traditional (Intel MKL, ATLAS) code does very well
- Will continue to program for GPU
  - $-L \Rightarrow L^{-1}$  (dtrtri in lapack)
  - $-C^{-1} = L^{-1} (L^{-1})^{T}$  (dlauum in lapack)
  - Compute Likelihood x X<sup>T</sup> C<sup>-1</sup> X / det(log|C|)
- We need to work on memory footprint to do the larger matrix
- We must learn to efficiently program GPU for each algorithm to get best performance
  - but is promising as the technique can be used on many
     core machines
     2010/10/21

### backup slides

## Likelihood fit procedure

- Assume r is the only unknown cosmological parameter
  - Pre-compute  $_{\pm 2}Y_{\ell m}$  (p),  $C_{\ell}^{[Q,U]}(p,p')$  for  $2 \leq \ell \leq 47$
  - Pre-compute S<sub>r=1</sub><sup>tensor</sup> and S<sup>scalar</sup>, N

- Y<sub>Im</sub>: Spin weighted Spherical harmonics
- Pre-compute (r  $\times$  S\_{r=1}^{tensor} + S^scalar + N)^-1 for r=0.0001, 0.0002, 0.0003,,, and store them
- Generate map (N<sub>side</sub>=128) assuming r=r<sub>input</sub>, add noise, smooth to N<sub>side</sub>=16, apply P06 mask
- Compute In L(m|r) for r=0.0001, 0.0002, 0.0003 and find r which gives max. In L(m|r)
  - repeat for many realizations
  - get  $\Delta r$  from 0.5 =  $\Delta ln L$
- Plot resulting r, compute mean of r and  $\Delta r$ , etc. <u>repeat for r<sub>input</sub> = 0.001, 0.003, 0.01,,,</u>

### Search for Dark Energy (HSC) This is HC

### We want to know shapes of many galaxies

- Hyper Suprime Cam @Subaru telescope will have 104 CCDs (1G pixel per shot)
  - Must stack images
- If possible, we want to do image processing in real time so that we can give feed back to observers
  - Sky changes during observation
  - How many minutes do we need for the next exposure?
- Using known stars, we overlay images



10 CCDs



### Discover primordial gravitational wave in Cosmic Microwave Background(CMB)



Polarized data from WMAP



In likelihood we need to invert matrix of the size  $N_p (N_p^3 \text{ computations})$ 

LiteBIRD is a small satellite experiment. We need to optimize the design parameter using simulations.

### GPU is hot

- GPGPU (general purpose graphics processing unit) is becoming popular
  - In 2008, I was looking at Cell
     CPUs (used in play station 3) and

# It promises 1/10 of cost and 1/20 of power consumption

### (Q2/3, 2010)

- 520-630 double precision Gflops/GPU(peak) as opposed to 78 Gflops for the current generation
- These numbers do not include transfer time between memories of CPU and GPU

# **CPU** and **GPU**

| Processor                  | Intel Core 2 Extreme<br>QX9650 | NVIDIA TESLA<br>C2070      |
|----------------------------|--------------------------------|----------------------------|
| Transistors                | 820 million                    | 1.4 billion                |
| <b>Processor clock</b>     | 3 GHz                          | 1.3 GHz?                   |
| Cores                      | 4                              | 512                        |
| Cache / Shared<br>Memory   | 6 MB x 2                       | 16-48 KB/768KB(L2)         |
| Threads executed per clock | 4                              | 512                        |
| Hardware threads in flight | 4                              | 24576                      |
| Memory controllers         | Off-die                        | 384bit                     |
| Memory Bandwidth           | 12.8 GBps                      | 64bytes/clock?             |
| 2010/10/21                 | Nohu Katavama                  | PCIe x16 < 8GB/s aggregate |

Nobu Katayama

### Fermi GPU

### **The Performance Gap Widens Further**





### >600 GFLOPS/sec (Double Precision)/chip

### It's real



Only <\$1,000 now

25

# Belle II

### Super KEKB collider

[Beam Channel]

Contribution ID: 561 The SuperKEKB accelerator status



### Belle II HLT

### The biggest computing challenge in Belle II

### Belle II HLT

- Belle HLT working well (200 CPU core or so)
  - It takes 0.4 second to analyze one Hadronic event
  - L1 trigger rate is ~500Hz, HLT output rate is ~200Hz
  - Real Hadronic events: 100Hz
- 10,000 cores needed Belle II HLT: much harder problem
  - L1 trigger rate 30KHz
  - HLT will reduce to 5KHz
    - Real Hadronic events:5KHz
  - Pixel detector produces 25GB/s data

 We need to reduce down to 100MB/s or so 2010/10/21 Nobu Katayama





2010/10/21

### B Physics with 50ab<sup>-1</sup>

"bread & butter":

- *B* factory:  $B \rightarrow J/\psi K_s, \mathcal{B} \sim 4.5 \cdot 10^{-4}$  $\delta S \sim 0.03$ 

- Super *B* factory:  $B \rightarrow K^* \gamma, \ \mathcal{B} \sim 4.0 \cdot 10^{-5}$  $\delta S \sim 0.2 \rightarrow \sim a \text{ few } \%$ 

Interesting modes for NP:

- **B** factory:  $B \rightarrow K\pi, \mathcal{B} \approx 1.9 \cdot 10^{-5}$ 

- Super *B* factory:  $B \rightarrow K \nu \nu, \mathcal{B} \sim 4.10^{-6}$ 



\$3

 $\overline{\rho}$ 

1.0

0.0

 $\Delta m_d \& \Delta m_s$ 

 $\Delta m_{d}$ 

1.5

1.0

0.5

-0.5

-1.0

0

**CKM** Fitter

0.0





JHEP 0904, 022 (2009)

2015 (Κ<sub>S</sub> $\pi_1^0$ γ), Kvv, τv, ... are not possible @ LHCb

## Luminosity upgrade projection



Y. Ohnishi



### **Data Acquisition**



### **Vertex Detector**

DEPFET: http://aldebaran.hll.mpg.de/twiki/bin/view/DEPFET/WebHome

| - |                     |         |           |
|---|---------------------|---------|-----------|
|   | Beam Pipe<br>DEPFET |         | r = 10mm  |
|   |                     | Layer 1 | r = 14mm  |
|   |                     | Layer 2 | r = 22mm  |
|   | DSSD                |         |           |
|   |                     | Layer 3 | r = 38mm  |
|   |                     | Layer 4 | r = 80mm  |
|   |                     | Layer 5 | r = 115mm |
|   |                     | Layer 6 | r = 140mm |

#### Mechanical mockup of pixel detector



### Prototype DEPFET pixel sensor and readout







A prototype ladder using the first 6 inch DSSD from Hamamatsu has been assembled and tested.

Nobu Katayama

### Exact covariance matrix

- Elements of S can be written in terms of spinweighted Y<sub>lm</sub> and C<sub>l</sub>
  - S can be written as r × S<sup>tensor</sup> + S<sup>scalar</sup>
  - but need to compute (S+N)<sup>-1</sup> each time

$$C_{QQ}(x,y) = \sum_{l} C_{l}^{EE} \sum_{m} W_{lm}(x) W_{lm}^{*}(y) + C_{l}^{BB} \sum_{m} X_{lm}(x) X_{lm}^{*}(y)$$

$$C_{QU}(x,y) = \sum_{l} C_{l}^{EE} \sum_{m} (-W_{lm}(x) X_{lm}^{*}(y)) + C_{l}^{BB} \sum_{m} X_{lm}(x) W_{lm}^{*}(y)$$

$$C_{UQ}(x,y) = \sum_{l} C_{l}^{EE} \sum_{m} (-X_{lm}(x) W_{lm}^{*}(y)) + C_{l}^{BB} \sum_{m} W_{lm}(x) X_{lm}^{*}(y)$$

$$C_{UU}(x,y) = \sum_{l} C_{l}^{EE} \sum_{m} X_{lm}(x) X_{lm}^{*}(y) + C_{l}^{BB} \sum_{m} W_{lm}(x) W_{lm}^{*}(y)$$

$$W_{lm}(x) = (-1)(2Y_{lm}(x) + 2Y_{lm}(x))/2$$

$$X_{lm}(x) = (-i)(2Y_{lm}(x) - 2Y_{lm}(x))/2$$
Nobu Katayama

## **Results and plan**

- Full sky
- Masked
- Dust
- Dust + Synchrotron
  - has an offset
  - r ~> 0.01 OK with this simple cleaning method
- Improve foreground remova
  - Though we think it is not a time to build complicated analysis techniques
- Add experimental details

